Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Radiother Oncol ; : 110324, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735537

ABSTRACT

PURPOSE: To determine the prevalence of anxiety and depression in patients with nasopharyngeal carcinoma (NPC) and to identify central symptoms and bridge symptoms among psychiatric disorders. METHODS: This cross-sectional study recruited patients with NPC in Guangzhou, China from May 2022, to October 2022. The General Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire-9 (PHQ-9) were used for screening anxiety and depression, respectively. Network analysis was conducted to evaluate the centrality and connectivity of the symptoms of anxiety, depression, quality of life (QoL) and insomnia. RESULTS: A total of 2806 respondents with complete GAD-7 and PHQ-9 scores out of 3828 were enrolled. The incidence of anxiety in the whole population was 26.5% (depression, 28.5%; either anxiety or depression, 34.8%). Anxiety was highest at caner diagnosis (34.2%), while depression reached a peak at late-stage radiotherapy (48.5%). Both moderate and severe anxiety and depression were exacerbated during radiotherapy. Coexisting anxiety and depression occurred in 58.3% of those with either anxiety or depression. The generated network showed that anxiety and depression symptoms were closely connected; insomnia was strongly connected with QoL. "Sad mood", "Lack of energy", and "Trouble relaxing" were the most important items in the network. Insomnia was the most significant bridge item that connected symptom groups. CONCLUSION: Patients with NPC are facing alarming disturbances of psychiatric disorders; tailored strategies should be implemented for high-risk patients. Besides, central symptoms (sad mood, lack of energy, and trouble relaxing) and bridge symptoms (insomnia) may be potential interventional targets in future clinical practice.

2.
Article in English | MEDLINE | ID: mdl-38652635

ABSTRACT

We endeavor on a rarely explored task named thermal infrared video denoising. Perception in the thermal infrared significantly enhances the capabilities of machine vision. Nonetheless, noise in imaging systems is one of the factors that hampers the large-scale application of equipment. Existing thermal infrared denoising methods, primarily focusing on the image level, inadequately utilize time-domain information and insufficiently conduct investigation of system-level mixed noise, presenting the inferior ability in the video-recorded era; while video denoising methods, commonly applied to RGB cameras, exhibit uncertain effectiveness owing to substantial dissimilarities in the noise models and modalities between RGB and thermal infrared images. In sight of this, we initially revisit the imaging mechanism, while concurrently introducing a physics-inspired noise generator based on the sources and characteristics of system noise. Subsequently, a thermal infrared video denoising dataset consisting of 518 real-world videos is constructed. Lastly, we propose a denoising model called multi-domain infrared video denoising network, capable of concentrating features from the time, space, and frequency domains to restore high-fidelity videos. Extensive experiments demonstrate that the proposed method achieves state-of-the-art denoising quality and can be successfully applied to commercial cameras and downstream vision tasks, providing a new avenue for clear videography in the thermal infrared world. The dataset and code will be available.

3.
Nat Nanotechnol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684808

ABSTRACT

Ferrotoroidicity-the fourth form of primary ferroic order-breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a cross-over to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials.

4.
J Transl Med ; 22(1): 244, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448996

ABSTRACT

AIMS: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for hematological malignancies. However, viral infections, particularly EBV infection, frequently occur following allo-HSCT and can result in multi-tissue and organ damage. Due to the lack of effective antiviral drugs, these infections can even progress to post-transplant lymphoproliferative disorders (PTLD), thereby impacting the prognosis. In light of this, our objective is to develop a prediction model for EBV infection following allo-HSCT. METHODS: A total of 466 patients who underwent haploidentical hematopoietic stem cell transplantation (haplo-HSCT) between September 2019 and December 2020 were included in this study. The patients were divided into a development cohort and a validation cohort based on the timing of their transplantation. Our aim was to develop and validate a grading scale using these cohorts to predict the risk of EBV infection within the first year after haplo-HSCT. Additionally, single-cell RNA sequencing (sc-RNAseq) data from the bone marrow of healthy donors were utilized to assess the impact of age on immune cells and viral infection. RESULTS: In the multivariate logistic regression model, four predictors were retained: donor age, female-to-male transplant, graft MNC (mononuclear cell) dose, and CD8 dose. Based on these predictors, an EBV reactivation predicting score system was constructed. The scoring system demonstrated good calibration in both the derivation and validation cohorts, as confirmed by the Hosmer-Lemeshow test (p > 0.05). The scoring system also exhibited favorable discriminative ability, as indicated by the C statistics of 0.72 in the derivation cohort and 0.60 in the validation cohort. Furthermore, the clinical efficacy of the scoring system was evaluated using Kaplan-Meier curves based on risk ratings. The results showed significant differences in EBV reactivation rates between different risk groups, with p-values less than 0.001 in both the derivation and validation cohorts, indicating robust clinical utility. The analysis of sc-RNAseq data from the bone marrow of healthy donors revealed that older age had a profound impact on the quantity and quality of immune subsets. Functional enrichment analysis highlighted that older age was associated with a higher risk of infection. Specifically, CD8 + T cells from older individuals showed enrichment in the pathway of "viral carcinogenesis", while older CD14 + monocytes exhibited enrichment in the pathway of "regulation of viral entry into host cell." These findings suggest that older age may contribute to an increased susceptibility to viral infections, as evidenced by the altered immune profiles observed in the sc-RNAseq data. CONCLUSION: Overall, these results demonstrate the development and validation of an effective scoring system for predicting EBV reactivation after haplo-HSCT, and provide insights into the impact of age on immune subsets and viral infection susceptibility based on sc-RNAseq analysis of healthy donors' bone marrow.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Humans , Female , Male , Hematopoietic Stem Cell Transplantation/adverse effects , Antiviral Agents , CD8-Positive T-Lymphocytes , Calibration
5.
Nat Commun ; 15(1): 2141, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459024

ABSTRACT

Flexible thermoelectric devices show great promise as sustainable power units for the exponentially increasing self-powered wearable electronics and ultra-widely distributed wireless sensor networks. While exciting proof-of-concept demonstrations have been reported, their large-scale implementation is impeded by unsatisfactory device performance and costly device fabrication techniques. Here, we develop Ag2Se-based thermoelectric films and flexible devices via inkjet printing. Large-area patterned arrays with microscale resolution are obtained in a dimensionally controlled manner by manipulating ink formulations and tuning printing parameters. Printed Ag2Se-based films exhibit (00 l)-textured feature, and an exceptional power factor (1097 µWm-1K-2 at 377 K) is obtained by engineering the film composition and microstructure. Benefiting from high-resolution device integration, fully inkjet-printed Ag2Se-based flexible devices achieve a record-high normalized power (2 µWK-2cm-2) and superior flexibility. Diverse application scenarios are offered by inkjet-printed devices, such as continuous power generation by harvesting thermal energy from the environment or human bodies. Our strategy demonstrates the potential to revolutionize the design and manufacture of multi-scale and complex flexible thermoelectric devices while reducing costs, enabling them to be integrated into emerging electronic systems as sustainable power sources.

6.
Sensors (Basel) ; 24(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474950

ABSTRACT

In the exploration of ocean resources, the submarine electric field signal plays a crucial role through marine electromagnetic methods. However, due to the field signal's low-frequency and weak characteristics, it often encounters interference from the instrument's own 1/f noise during its acquisition. To address this issue, we developed a low-noise amplifier for the submarine electric field signal based on chopping amplification technology. This amplifier utilizes low-temperature electronic components to adapt to the cold submarine environment and enhances its independence by incorporating a square wave generator. Additionally, we conducted simulations and experimental tests on the designed chopper amplifier circuit, evaluating the equivalent input voltage noise spectrum (EIVNS) and the frequency response within 1 mHz~100 Hz. The experimental results indicate that the amplifier designed in this study achieves sufficiently low noise 2 nV/√Hz@1 mHz, effectively amplifying the submarine electric field signal measured with the electric field sensor.

7.
Article in English | MEDLINE | ID: mdl-38358866

ABSTRACT

Implicit neural representation (INR) characterizes the attributes of a signal as a function of corresponding coordinates which emerges as a sharp weapon for solving inverse problems. However, the expressive power of INR is limited by the spectral bias in the network training. In this paper, we find that such a frequency-related problem could be greatly solved by re-arranging the coordinates of the input signal, for which we propose the disorder-invariant implicit neural representation (DINER) by augmenting a hash-table to a traditional INR backbone. Given discrete signals sharing the same histogram of attributes and different arrangement orders, the hash-table could project the coordinates into the same distribution for which the mapped signal can be better modeled using the subsequent INR network, leading to significantly alleviated spectral bias. Furthermore, the expressive power of the DINER is determined by the width of the hash-table. Different width corresponds to different geometrical elements in the attribute space, e.g., 1D curve, 2D curved-plane and 3D curved-volume when the width is set as 1, 2 and 3, respectively. More covered areas of the geometrical elements result in stronger expressive power. Experiments not only reveal the generalization of the DINER for different INR backbones (MLP vs. SIREN) and various tasks (image/video representation, phase retrieval, refractive index recovery, and neural radiance field optimization) but also show the superiority over the state-of-the-art algorithms both in quality and speed. Project page: https://ezio77.github.io/DINER-website/.

8.
Opt Lett ; 49(2): 210-213, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38194530

ABSTRACT

The kinetics of optical switching due to the insulator-metal phase transition in a VO2 thin film is studied experimentally at different laser pulse repetition frequencies (PRFs) in the NIR range and compared with temperature kinetics obtained through the thermal conductance calculations. Two switching processes have been found with characteristic times <2 ms and <15 ms depending on the PRF; the former is explained by the accumulation of metallic domains remaining after a single-pulse phase transition, and the latter is referred to the heat accumulation in the film. Consequently, the dynamics of the microscopic domains is leading in the initiation of phase transition under pulse-periodic conditions compared to the macroscopic heat transfer. The reverse transition at the radiation turn-off depends on the PRF with a time coefficient of 17.5 µs/kHz and is determined by the metallic domains' decay in the film. The results are important for understanding the nature of the insulator-metal transition in thin films of VO2 as well as using them in all-optical switches of pulse-periodic laser radiation.

9.
Nat Commun ; 15(1): 949, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297016

ABSTRACT

Patients with residual nasopharyngeal carcinoma after receiving definitive treatment have poor prognoses. Although immune checkpoint therapies have achieved breakthroughs for treating recurrent and metastatic nasopharyngeal carcinoma, none of these strategies have been assessed for treating residual nasopharyngeal carcinoma. In this single-arm, phase 2 trial, we aimed to evaluate the antitumor efficacy and safety of toripalimab (anti-PD1 antibody) plus capecitabine in patients with residual nasopharyngeal carcinoma after definitive treatment (ChiCTR1900023710). Primary endpoint of this trial was the objective response rate assessed according to RECIST (version 1.1). Secondary endpoints included complete response rate, disease control rate, duration of response, progression-free survival, safety profile, and treatment compliance. Between June 1, 2020, and May 31, 2021, 23 patients were recruited and received six cycles of toripalimab plus capecitabine every 3 weeks. In efficacy analyses, 13 patients (56.5%) had complete response, and 9 patients (39.1%) had partial response, with an objective response rate of 95.7% (95% CI 78.1-99.9). The trial met its prespecified primary endpoint. In safety analyses, 21 of (91.3%) 23 patients had treatment-related adverse events. The most frequently reported adverse event was hand-foot syndrome (11 patients [47.8%]). The most common grade 3 adverse event was hand-foot syndrome (two patients [8.7%]). No grades 4-5 treatment-related adverse events were recorded. This phase 2 trial shows that combining toripalimab with capecitabine has promising antitumour activity and a manageable safety profile for patients with residual nasopharyngeal carcinoma.


Subject(s)
Antibodies, Monoclonal, Humanized , Hand-Foot Syndrome , Nasopharyngeal Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Capecitabine/therapeutic use , Hand-Foot Syndrome/etiology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology
10.
Small Methods ; 8(3): e2301368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009516

ABSTRACT

The presence of toxic organic pollutants in aquatic environments poses significant threats to human health and global ecosystems. Photocatalysis that enables in situ production and activation of H2 O2 presents a promising approach for pollutant removal; however, the processes of H2 O2 production and activation potentially compete for active sites and charge carriers on the photocatalyst surface, leading to limited catalytic performance. Herein, a hierarchical 2D/2D heterojunction nanosphere composed of ultrathin BiOBr and BiOI nanosheets (BiOBr/BiOI) is developed by a one-pot microwave-assisted synthesis to achieve in situ H2 O2 production and activation for efficient photocatalytic wastewater treatment. Various experimental and characterization results reveal that the BiOBr/BiOI heterojunction facilitates efficient electron transfer from BiOBr to BiOI, enabling the one-step two-electron O2 reduction for H2 O2 production. Moreover, the ultrathin BiOI provides abundant active sites for H2 O2 adsorption, promoting in situ H2 O2 activation for •O2 - generation. As a result, the BiOBr/BiOI hybrid exhibits excellent activity for pollutant degradation with an apparent rate constant of 0.141 min-1 , which is 3.8 and 47.3 times that of pristine BiOBr and BiOI, respectively. This work expands the range of the materials suitable for in situ H2 O2 production and activation, paving the way toward sustainable environmental remediation using solar energy.

11.
Sci Total Environ ; 912: 169365, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104823

ABSTRACT

The rapid development of nuclear energy in China has led to increased attention to the treatment of radioactive wastewaters. Herein, a novel magnetic adsorbent, magnetic Prussian blue­molybdenum disulfide (PB/Fe3O4/MoS2) nanocomposite, was prepared by a simple in-situ fixation of ferric oxide nanoparticles (Fe3O4 NPs) and Prussian Blue (PB) shell layers on the surface of molybdenum disulfide (MoS2) nanosheets carrier. The prepared PB/Fe3O4/MoS2 nanocomposites adsorbent displayed excellent fast magnetic separation and adsorption capacity of Cs+ (Qm = 80.51 mg/g) from water. The adsorption behavior of Cs+ by PB/Fe3O4/MoS2 conformed to Langmuir isothermal and second-order kinetic model, which belonged to chemical adsorption and endothermic reaction. The equilibrium adsorption capacity of PB/Fe3O4/MoS2 to Cs+ has reached 90 % in less than 110 min. Moreover, the adsorption properties of PB/Fe3O4/MoS2 remained good in the pH range of 2-7. Based on this, PB/Fe3O4/MoS2 complex was a fast and high selectivity adsorption material for Cs+, which was expected to be used in the practical treatment of cesium-containing radioactive wastewater.

12.
Math Biosci Eng ; 20(10): 18413-18444, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-38052564

ABSTRACT

The effects of predator-taxis and conversion time delay on formations of spatiotemporal patterns in a predator-prey model are explored. First, the well-posedness, which implies global existence of classical solutions, is proved. Then, we establish critical conditions for the destabilization of the coexistence equilibrium via Turing/Turing-Turing bifurcations by describing the first Turing bifurcation curve; we also theoretically predict possible bistable/multi-stable spatially heterogeneous patterns. Next, we demonstrate that the coexistence equilibrium can also be destabilized via Hopf, Hopf-Hopf and Turing-Hopf bifurcations; also possible stable/bistable spatially inhomogeneous staggered periodic patterns and bistable spatially inhomogeneous synchronous periodic patterns are theoretically predicted. Finally, numerical experiments also support theoretical predictions and partially extend them. In a word, theoretical analyses indicate that, on the one hand, strong predator-taxis can eliminate spatial patterns caused by self-diffusion; on the other hand, the joint effects of predator-taxis and conversion time delay can induce complex survival patterns, e.g., bistable spatially heterogeneous staggered/synchronous periodic patterns, thus diversifying populations' survival patterns.

13.
iScience ; 26(12): 108347, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125021

ABSTRACT

It is imperative to optimally utilize virtues and obviate defects of fully automated analysis and expert knowledge in new paradigms of healthcare. We present a deep learning-based semiautomated workflow (RAINMAN) with 12,809 follow-up scans among 2,172 patients with treated nasopharyngeal carcinoma from three centers (ChiCTR.org.cn, Chi-CTR2200056595). A boost of diagnostic performance and reduced workload was observed in RAINMAN compared with the original manual interpretations (internal vs. external: sensitivity, 2.5% [p = 0.500] vs. 3.2% [p = 0.031]; specificity, 2.9% [p < 0.001] vs. 0.3% [p = 0.302]; workload reduction, 79.3% vs. 76.2%). The workflow also yielded a triaging performance of 83.6%, with increases of 1.5% in sensitivity (p = 1.000) and 0.6%-1.3% (all p < 0.05) in specificity compared to three radiologists in the reader study. The semiautomated workflow shows its unique superiority in reducing radiologist's workload by eliminating negative scans while retaining the diagnostic performance of radiologists.

14.
Histol Histopathol ; : 18676, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37997936

ABSTRACT

Ahead of Print article withdrawn by publisher. This article has been withdrawn at the request of the author(s). The authors have found some mistakes that could affert the conclusion. The publisher apologizes for any inconvenience this may cause.

15.
Front Neurol ; 14: 1223457, 2023.
Article in English | MEDLINE | ID: mdl-37854064

ABSTRACT

Objective: Temporal lobe epilepsy (TLE) is the most common cause of drug-resistant epilepsy and can be treated surgically to control seizures. In this study, we analyzed the relevant research literature in the field of temporal lobe epilepsy (TLE) treatment to understand the background, hotspots, and trends in TLE treatment research. Methods: We discussed the trend, frontier, and hotspot of scientific output in TLE treatment research in the world in the last 20 years by searching the core collection of the Web of Science database. Excel and CiteSpace software were used to analyze the basic data of the literature. Result: We identified a total of 2,051 publications on TLE treatment from 75 countries between 2003 and 2023. We found that the publication rate was generally increasing. The United States was the most publishing country; among the research institutions on TLE treatment, the University of California system published the most relevant literature and collaborated the most with other institutions. The co-citation of literature, keyword co-occurrence, and its clustering analysis showed that the early studies focused on open surgical treatment, mainly by lobectomy. In recent years, the attention given to stereotactic, microsurgery, and other surgical techniques has gradually increased, and the burst analysis indicated that new research hotspots may appear in the future in the areas of improved surgical procedures and mechanism research.

17.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 14528-14545, 2023 12.
Article in English | MEDLINE | ID: mdl-37607140

ABSTRACT

In this article, we present a large-scale detailed 3D face dataset, FaceScape, and the corresponding benchmark to evaluate single-view facial 3D reconstruction. By training on FaceScape data, a novel algorithm is proposed to predict elaborate riggable 3D face models from a single image input. FaceScape dataset releases 16,940 textured 3D faces, captured from 847 subjects and each with 20 specific expressions. The 3D models contain the pore-level facial geometry that is also processed to be topologically uniform. These fine 3D facial models can be represented as a 3D morphable model for coarse shapes and displacement maps for detailed geometry. Taking advantage of the large-scale and high-accuracy dataset, a novel algorithm is further proposed to learn the expression-specific dynamic details using a deep neural network. The learned relationship serves as the foundation of our 3D face prediction system from a single image input. Different from most previous methods, our predicted 3D models are riggable with highly detailed geometry under different expressions. We also use FaceScape data to generate the in-the-wild and in-the-lab benchmark to evaluate recent methods of single-view face reconstruction. The accuracy is reported and analyzed on the dimensions of camera pose and focal length, which provides a faithful and comprehensive evaluation and reveals new challenges. The unprecedented dataset, benchmark, and code have been released to the public for research purpose.


Subject(s)
Face , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Face/diagnostic imaging , Benchmarking , Algorithms , Databases, Factual
18.
Lipids Health Dis ; 22(1): 81, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365637

ABSTRACT

BACKGROUND: Dysregulation of lipid metabolism is closely associated with cancer progression. The study aimed to establish a prognostic model to predict distant metastasis-free survival (DMFS) in patients with nasopharyngeal carcinoma (NPC), based on lipidomics. METHODS: The plasma lipid profiles of 179 patients with locoregionally advanced NPC (LANPC) were measured and quantified using widely targeted quantitative lipidomics. Then, patients were randomly split into the training (125 patients, 69.8%) and validation (54 patients, 30.2%) sets. To identify distant metastasis-associated lipids, univariate Cox regression was applied to the training set (P < 0.05). A deep survival method called DeepSurv was employed to develop a proposed model based on significant lipid species (P < 0.01) and clinical biomarkers to predict DMFS. Concordance index and receiver operating curve analyses were performed to assess model effectiveness. The study also explored the potential role of lipid alterations in the prognosis of NPC. RESULTS: Forty lipids were recognized as distant metastasis-associated (P < 0.05) by univariate Cox regression. The concordance indices of the proposed model were 0.764 (95% confidence interval (CI), 0.682-0.846) and 0.760 (95% CI, 0.649-0.871) in the training and validation sets, respectively. High-risk patients had poorer 5-year DMFS compared with low-risk patients (Hazard ratio, 26.18; 95% CI, 3.52-194.80; P < 0.0001). Moreover, the six lipids were significantly correlated with immunity- and inflammation-associated biomarkers and were mainly enriched in metabolic pathways. CONCLUSIONS: Widely targeted quantitative lipidomics reveals plasma lipid predictors for LANPC, the prognostic model based on that demonstrated superior performance in predicting metastasis in LANPC patients.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Prognosis , Carcinoma/pathology , Lipidomics , Lipids
19.
BMC Cancer ; 23(1): 410, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149594

ABSTRACT

BACKGROUND: To develop and validate a predictive nomogram for tumor residue 3-6 months after treatment based on postradiotherapy plasma Epstein-Barr virus (EBV) deoxyribonucleic acid (DNA), clinical stage, and radiotherapy (RT) dose in patients with stage II-IVA nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). METHODS: In this retrospective study, 1050 eligible patients with stage II-IVA NPC, who completed curative IMRT and underwent pretreatment and postradiotherapy (-7 to +28 days after IMRT) EBV DNA testing, were enrolled from 2012 to 2017. The prognostic value of the residue was explored using Cox regression analysis in patients (n=1050). A nomogram for predicting tumor residues after 3-6 months was developed using logistic regression analyses in the development cohort (n=736) and validated in an internal cohort (n=314). RESULTS: Tumor residue was an independent inferior prognostic factor for 5-year overall survival, progression-free survival, locoregional recurrence-free survival and distant metastasis-free survival (all P<0.001). A prediction nomogram based on postradiotherapy plasma EBV DNA level (0 vs. 1-499 vs. ≥500 copies/ml), clinical stage (II vs. III vs. IVA), and RT dose (68.00-69.96 vs. 70.00-74.00 Gy) estimated the probability of residue development. The nomogram showed better discrimination (area under the curve (AUC): 0.752) than either the clinical stage (0.659) or postradiotherapy EBV DNA level (0.627) alone in the development and validation cohorts (AUC: 0.728). CONCLUSIONS: We developed and validated a nomogram model integrating clinical characteristics at the end of IMRT for predicting whether tumor will residue or not after 3-6 months. Thus, high-risk NPC patients who might benefit from immediate additional intervention could be identified by the model, and the probability of residue can be reduced in the future.


Subject(s)
Carcinoma , Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/pathology , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/radiotherapy , Carcinoma/pathology , Retrospective Studies , Nomograms , Nasopharyngeal Neoplasms/pathology , DNA, Viral , Prognosis
20.
Life (Basel) ; 13(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37240811

ABSTRACT

PURPOSE: This study aims to evaluate the value of a serum metabolomics-based metabolic signature for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients, thereby assisting clinical decisions. METHODS: In this retrospective study, a total of 320 LA-NPC patients were randomly divided into a training set (ca. 70%; n = 224) and a validation set (ca. 30%; n = 96). Serum samples were analyzed using widely targeted metabolomics. Univariate and multivariate Cox regression analyses were used to identify candidate metabolites related to progression-free survival (PFS). Patients were categorized into high-risk and low-risk groups based on the median metabolic risk score (Met score), and the PFS difference between the two groups was compared using Kaplan-Meier curves. The predictive performance of the metabolic signature was evaluated using the concordance index (C-index) and the time-dependent receiver operating characteristic (ROC), and a comprehensive nomogram was constructed using the Met score and other clinical factors. RESULTS: Nine metabolites were screened to build the metabolic signature and generate the Met score, which effectively separated patients into low- and high-risk groups. The C-index in the training and validation sets was 0.71 and 0.73, respectively. The 5-year PFS was 53.7% (95% CI, 45.12-63.86) in the high-risk group and 83.0% (95%CI, 76.31-90.26) in the low-risk group. During the construction of the nomogram, Met score, clinical stage, pre-treatment EBV DNA level, and gender were identified as independent prognostic factors for PFS. The predictive performance of the comprehensive model was better than that of the traditional model. CONCLUSION: The metabolic signature developed through serum metabolomics is a reliable prognostic indicator of PFS in LA-NPC patients and has important clinical significance.

SELECTION OF CITATIONS
SEARCH DETAIL
...